vllm.compilation.cuda_graph ¶
CUDAGraphEntry dataclass ¶
Source code in vllm/compilation/cuda_graph.py
CUDAGraphLogging ¶
Aggregate and log cudagraph metrics
Source code in vllm/compilation/cuda_graph.py
COLUMN_HEADERS class-attribute instance-attribute ¶
settings_header instance-attribute ¶
settings_header = f'**CUDAGraph Config Settings:**
- Mode: {cg_mode}
- Capture sizes: {cg_capture_sizes}
**CUDAGraph Stats:**
'
__init__ ¶
__init__(
cg_mode: CUDAGraphMode,
cg_capture_sizes: list[int] | None,
)
Source code in vllm/compilation/cuda_graph.py
generate_metric_table ¶
generate_metric_table() -> str
Source code in vllm/compilation/cuda_graph.py
log ¶
observe ¶
observe(cudagraph_stat: CUDAGraphStat)
CUDAGraphOptions dataclass ¶
Source code in vllm/compilation/cuda_graph.py
CUDAGraphStat dataclass ¶
Source code in vllm/compilation/cuda_graph.py
CUDAGraphWrapper ¶
Wraps a runnable to add CUDA graph capturing and replaying ability. And provide attribute access to the underlying runnable via __getattr__.
The workflow of this wrapper in the cudagraph dispatching is as follows: 1. At initialization, a runtime mode is assigned to the wrapper (FULL or PIECEWISE). 2. At runtime, the wrapper receives a runtime_mode and a batch_descriptor(key) from the forward context and blindly trust them for cudagraph dispatching. 3. If runtime_mode is NONE or runtime_mode does not match the mode of the wrapper, just call the runnable directly. 4. Otherwise, i.e., the runtime_mode matches the mode of the wrapper, the wrapper will perform cudagraph capture(if key does not exist, create a new entry and cache it) or replay (if key exists in the cache).
Note: CUDAGraphWrapper does not store persistent buffers or copy any runtime inputs into that buffers for replay. We assume implementing them is done outside of the wrapper. That is because we do not make any assumption on the dynamic shape (batch size) of the runtime inputs, as a trade-off for staying orthogonal to compilation logic. Nevertheless, tracing and checking the input addresses to be consistent during replay is guaranteed when VLLM_LOGGING_LEVEL == "DEBUG".
Source code in vllm/compilation/cuda_graph.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | |
concrete_cudagraph_entries instance-attribute ¶
concrete_cudagraph_entries: dict[
BatchDescriptor, CUDAGraphEntry
] = {}
__call__ ¶
Source code in vllm/compilation/cuda_graph.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | |
__init__ ¶
__init__(
runnable: Callable,
vllm_config: VllmConfig,
runtime_mode: CUDAGraphMode,
cudagraph_options: CUDAGraphOptions | None = None,
)